High efficiency single quantum well graded-index separate-confinement heterostructure lasers fabricated with MeV oxygen ion implantation

Abstract
Single quantum well AlGaAs/GaAs graded-index separate-confinement heterostructure lasers have been fabricated using MeV oxygen ion implantation plus optimized subsequent thermal annealing. A high differential quantum efficiency of 85% has been obtained in a 360-μm-long and 10-μm-wide stripe geometry device. The results have also demonstrated that excellent electrical isolation (breakdown voltage of over 30 V) and low threshold currents (22 mA) can be obtained with MeV oxygen ion isolation. It is suggested that oxygen ion implantation induced selective carrier compensation and compositional disordering in the quantum well region as well as radiation-induced lattice disordering in AlxGa1−xAs/GaAs may be mostly responsible for the buried layer modification in this fabrication process.