Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector

Abstract
A theoretical model is developed for the pulse dynamics in a fiber laser mode locked by a saturable Bragg reflector and operating in regimes beyond the scope of the master mode-locking equation. An asymptotically valid mode-locked evolution equation is derived, which includes a heuristic model for the saturable Bragg reflector dynamics. The model employed allows, for the first time to our knowledge, direct comparison (with no free parameters) of the theoretical predictions of the pulse spectral and temporal profiles with experimental results in both the normal and anomalous dispersion regimes. Extensive numerical simulations of the governing evolution equation, an averaged equation, and analytical solutions are found to be in excellent agreement with experimental results.