Frontier questions about sister chromatid separation in anaphase
- 1 June 1995
- Vol. 17 (6), 519-526
- https://doi.org/10.1002/bies.950170608
Abstract
Sister chromatid separation in anaphase is an important event in the cell's transmission of genetic information to a descendent. It has been investigated from different aspects: cell cycle regulation, spindle and chromosome dynamics within the three‐dimensional cell architecture, transmission fidelity control and cellular signaling. Integrated studies directed toward unified understanding are possible using multidisciplinary methods with model organisms. Ubiquitin‐dependent proteolysis, protein dephosphorylation, an unknown function by the TPR repeat proteins, chromosome transport by microtubule‐based motors and DNA topological change by DNA topoisomerase II are all necessary for progression from metaphase to anaphase. Chromosome condensation, mitotic kinetochore function and spindle formation require a large number of proteins, which are prerequisites for successful sister chromatid separation. Factors that help to retain sister chromatid connection after replication and prevent premature separation remain to be determined. Although sister chromatid separation occurs in anaphase, gene functions in other cell cycle stages also ensure the progression of correct chromatid separation.Keywords
This publication has 75 references indexed in Scilit:
- DPY-27: A chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosomeCell, 1994
- A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitroCell, 1994
- ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure.The Journal of cell biology, 1994
- SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family.The Journal of cell biology, 1993
- Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factorCell, 1993
- Mitotic regulation of protein phosphatases by the fission yeast sds22 proteinCurrent Biology, 1993
- Feedback control of mitosis in budding yeastCell, 1991
- S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule functionCell, 1991
- Snap helix with knob and hole: Essential repeats in S. pombe nuclear protein nuc2 +Cell, 1990
- A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesisCell, 1990