A directional spherical wavelet analysis is performed to examine the Gaussianity of the WMAP 1-year data. Such an analysis is facilitated by the introduction of a fast directional continuous spherical wavelet transform. The directional nature of the analysis allows one to probe orientated structure in the data. Significant deviations from Gaussianity are detected in the skewness and kurtosis of spherical elliptical Mexican hat and real Morlet wavelet coefficients for both the WMAP and Tegmark et al. (2003) foreground-removed maps. The previous non-Gaussianity detection made by Vielva et al. (2003) using the spherical symmetric Mexican hat wavelet is confirmed, although their detection at the 99.9% significance level is only made at the 95.3% significance level using our most conservative statistical test. Furthermore, deviations from Gaussianity in the skewness of spherical real Morlet wavelet coefficients on a wavelet scale of 550 arcmin (corresponding to an effective global size on the sky of approximately 26 degrees and an internal size of 3 degrees) at an azimuthal orientation of 72 degrees, are made at the 98.3% significance level, using the same conservative method. The wavelet analysis inherently allows one to localise on the sky those regions that introduce skewness and those that introduce kurtosis. Preliminary noise analysis indicates that these detected deviation regions are not atypical and have average noise dispersion. Further analysis is required to ascertain whether these detected regions correspond to secondary or instrumental effects, or whether in fact the non-Gaussianity detected is due to intrinsic primordial fluctuations in the cosmic microwave background.