Does water drag solutes through kidney proximal tubule?

Abstract
Coupling of salt and water movements across kidney proximal tubules was studied in the presence of an induced transepithelial osmotic water flux. Convoluted proximal tubules from rabbit kidney were perfused in vitro with a control solution, with or without 50 mM/l of mannitol or raffinose in the bath. Osmolalities of the perfused and collected fluids as well as the net water fluxJ v were measured in each experiment. The net solute fluxJ s was calculated from the difference between the amount of total solutes delivered and collected at each end of the tubule. No apparent net transepithelial solute movements were detected in the presence of an osmotic water flux when active solute transport was inhibited either by an externalt° of 26°C or by ouabain in the bath. The water flux observed was similar to that calculated assuming that only water crossed the epithelium, and no streaming potential was measured, whether or not active transport was blocked. It is concluded that the osmotic water flux through kidney proximal tubule does not drag a significant amount of solutes, probably because of the absence of convective solvent flux. This suggests the existence of different pathways for water and salt movement.