A new apex-ejecting perfused rat heart preparation: relation between coronary flow and loading conditions

Abstract
The isolated perfused rat heart is an important experimental preparation for both mechanical and biochemical studies. In order to define better the relationship between coronary flow and loading conditions, a new preparation was developed in which the left ventricle ejected through the apex, while the aortic perfusion pressure could be separately controlled at a higher level than the apex afterload. Results were compared with a standard aortic perfused and ejecting preparation. All analyses were made at low calcium concentration (1.6 mmol·litre−1) for reducing cardiac performance. Coronary flow was related to perfusion pressure in the aortic ejecting preparation when the aortic afterload chamber was between 6.0 and 9.3 kPa (45 and 70 mmHg). Coronary autoregulation was demonstrable in the apex ejecting preparation irrespective of the height of the apex afterload chamber and the aortic ejecting preparation when the aortic chamber was between 11.0 and 16.0 kPa (83 and 120 mmHg). Following the addition of 10−6 mol·litre−1 adenosine, there was significant coronary vasodilatation, and flow became pressure dependent in all cases. In the apex-ejecting preparation, with a high aortic pressure, coronary flow remained at relatively fixed level, and increases in oxygen demand were met by increasing oxygen extraction. Thus, in this preparation oxygen extraction was directly related to workload. With abrupt increases in afterload, going from 6.0 to 9.3 kPa (45 to 70 mmHg) to a higher level, there was evidence of transient hypoxia with the aortic ejecting but not the apex ejecting preparation. It is concluded that the apex ejecting heart is a stable preparation in which coronary perfusion pressure and flow can be maintained independent of preload and afterload. The coronary reserve of this preparation provides some advantage for both mechanical and biomedical studies.

This publication has 4 references indexed in Scilit: