A pattern-mixture odds ratio model for incomplete categorical data

Abstract
Most models for incomplete data are formulated within the selection model framework. Pattern-mixture models are increasingly seen as a viable alternative, both from an interpretational as well as from a computational point of view (Little 1993, Hogan and Laird 1997, Ekholm and Skinner 1998). Whereas most applications are either for continuous normally distributed data or for simplified categorical settings such as contingency tables, we show how a multivariate odds ratio model (Molenberghs and Lesaffre 1994, 1998) can be used to fit pattern-mixture models to repeated binary outcomes with continuous covariates. Apart from point estimation, useful methods for interval estimation are presented and data from a clinical study are analyzed to illustrate the methods.