A comparison of regionalisation methods for catchment model parameters

Top Cited Papers
Open Access
Abstract
In this study we examine the relative performance of a range of methods for transposing catchment model parameters to ungauged catchments. We calibrate 11 parameters of a semi-distributed conceptual rainfall-runoff model to daily runoff and snow cover data of 320 Austrian catchments in the period 1987-1997 and verify the model for the period 1976-1986. We evaluate the predictive accuracy of the regionalisation methods by jack-knife cross-validation against daily runoff and snow cover data. The results indicate that two methods perform best. The first is a kriging approach where the model parameters are regionalised independently from each other based on their spatial correlation. The second is a similarity approach where the complete set of model parameters is transposed from a donor catchment that is most similar in terms of its physiographic attributes (mean catchment elevation, stream network density, lake index, areal proportion of porous aquifers, land use, soils and geology). For the calibration period, the median Nash-Sutcliffe model efficiency ME of daily runoff is 0.67 for both methods as compared to ME=0.72 for the at-site simulations. For the verification period, the corresponding efficiencies are 0.62 and 0.66. All regionalisation methods perform similar in terms of simulating snow cover.
All Related Versions