Mismatch repair in mammalian cells

Abstract
A vital process in maintaining a low genetic error rate is the removal of mismatched bases in DNA. The importance of this process in E. coli is demonstrated by the 100–1000 fold increase in mutation frequency observed in cells deficient in this repair system(1). Mismatches can arise as a consequence of recombination, errors in replication and as a result of spontaneous chemical deamination, the latter process resulting in an estimated twelve T:G mismatches per genome per day in mammalian cells(2). Recent studies, discussed here, provide evidence for the existence of specific mismatch repair systems in mammalian and human cells.