Cross-protection against influenza virus infection afforded by trivalent inactivated vaccines inoculated intranasally with cholera toxin B subunit.

Abstract
Cross-protection against influenza virus infection was examined in mice, immunized intranasally with a nasal site-restricted volume of inactivated vaccines together with cholera toxin B subunit (CTB) as an adjuvant. The mice were challenged with either a small or a large volume of mouse-adapted virus suspension, each of which gave virgin mice either a predominant upper or lower respiratory tract infection. A single dose of a monovalent influenza A H3N2 virus vaccine with CTB provided complete cross-protection against the small-volume challenge with a drift virus within the same subtype, but a slight cross-protection against the large-volume challenge. A second dose of another drift virus vaccine increased the efficacy of cross-protection against the large-volume challenge. Similar cross-protection against H1N1, H3N2, or B type drift virus challenge was provided in the mice having received a primary dose of a mixture of H1N1, H3N2, and B virus vaccines with CTB and a second dose of another trivalent vaccine. The degree of cross-protection against the small- and the large-volume infection paralleled mainly the amount of cross-reacting IgA antibodies to challenge virus hemagglutinin in the nasal wash and that of cross-reacting IgG antibodies in the bronchoalveolar wash, respectively. On the other hand, in mice immunized subcutaneously with the trivalent vaccines having no cross-reacting IgA antibodies, the efficacy of cross-protection was not so high as that of nasal vaccination. These results suggest that the nasal inoculation of trivalent vaccines with CTB provides cross-protection against a broader range of viruses than does the current parenteral vaccination.