Abstract
The small-subunit ribosomal DNA (rDNA) diversity was found to be very high in a Hawaiian soil community that might be expected to have lower diversity than the communities in continental soils because the Hawaiian soil is geographically isolated and only 200 years old, is subjected to a constant climate, and harbors low plant diversity. Since an underlying community structure could not be revealed by analyzing the total eubacterial rDNA, we first fractionated the DNA on the basis of guanine-plus-cytosine (G+C) content by using bis-benzimidazole and equilibrium centrifugation and then analyzed the bacterial rDNA amplified from a fraction with a high biomass (63% G+C fraction) and a fraction with a low biomass (35% G+C fraction). The rDNA clone libraries were screened by amplified rDNA restriction analysis to determine phylotype distribution. The dominant biomass reflected by the 63% G+C fraction contained several dominant phylotypes, while the community members that were less successful (35% G+C fraction) did not show dominance but there was a very high diversity of phylotypes. Nucleotide sequence analysis revealed taxa belonging to the groups expected for the G+C contents used. The dominant phylotypes in the 63% G+C fraction were members of thePseudomonas,Rhizobium-Agrobacterium, andRhodospirillumassemblages, while all of the clones sequenced from the 35% G+C fraction were affiliated with severalClostridiumassemblages. The two-step rDNA analysis used here uncovered more diversity than can be detected by direct rDNA analysis of total community DNA. The G+C separation step is also a way to detect some of the less dominant organisms in a community.