Lysophosphatidic acid‐regulated mitogenic ERK signaling in androgen‐insensitive prostate cancer PC‐3 cells

Abstract
Advanced and recurrent prostate tumors contain elevated levels of activated extracellular signal-regulated kinases 1 and 2 (ERK) in comparison to early-stage or benign specimens, and inhibition of ERK activation attenuates growth factor-dependent proliferation of prostate cells, suggesting a potential regulatory role for ERK in prostate tumorigenesis. Factors responsible for ERK activation in prostate cells are not well defined. Here, we show positive cooperative interaction between the G protein-coupled lysophosphatidic acid (LPA) and tyrosine kinase epidermal growth factor (EGF) receptors in androgen-insensitive prostate cancer PC-3 cells. Pre-treatment of the PC-3 cells with LPA decreases the dose of EGF required to elicit maximal activation of EGFR. Furthermore, treatment with LPA alone induces the rapid (maximal signal within 2 min) tyrosine phosphorylation of EGFR, and subsequent (maximal signal after 5 min) activation of ERK, suggesting that EGFR activation precedes ERK phosphorylation and may constitute a required component for signal relay from the LPA receptor to ERK. Accordingly, we show that inhibition of EGFR kinase activity attenuates the LPA-regulated ERK activation. In addition, we find that the LPA-regulated tyrosine phosphorylation of EGFR and activation of ERK are attenuated by batimastat, a generic inhibitor of matrix metalloproteinases (MMP). However, unlike the situation in fibroblasts, we find that the LPA-induced transactivation of EGFR in PC-3 cells is not mediated by shedding of heparin-binding EGF. Together, our data show that LPA and EGF cooperate to induce mitogenic signaling in prostate cancer cells in an MMP-regulated activation of the ERK pathway.