Inducing coherence in networks of bistable maps by varying the interaction range

Abstract
Ordinarily, two different topologies have been used to model spatiotemporal chaos and to study complexity in networks of maps: one where sites interact only with nearest neighbors (e.g., the standard diffusive coupling) and one where sites interact with all sites in the network (global coupling). Here we investigate intermediate regimes considering the interaction range as a free tunable parameter. The synchronization behavior normally seen in globally coupled maps is found to set in for interaction ranges considerably smaller than the system size. In addition, we analytically derive stability conditions for the onset of coherent states (full synchronization) from which the minimum interaction range needed to induce coherence in homogeneously coupled maps can be determined. Such conditions are also obtained for inhomogeneous situations when the coupling strength decreases linearly with the distance. The characteristic range for the onset of coherence is studied in detail as a function of model parameters.