Reversible inhibition by lanthanum of the hydrosmotic response to serosal hypertonicity in toad urinary bladder

Abstract
In the urinary bladder of amphibia, hypertonicity of the serosal bath (SH) evokes an increase in transepithelial water permeability, the characteristics of which resemble the response to antidiuretic hormone (ADH). The ionic dependency, in particular for Ca2+, appears very similar forSH- and ADH-induced water fluxes. In the present experiments La3+ was used as a probe to study the Ca2+-dependency of the hydrosmotic response toSH in isolated urinary bladder of the toadBufo marinus. Addition of La3+ (5mm) on the serosal side of the membrane produced a significant and reversible increase in basal transepithelial water flux. The hydrosmotic response elicited by adding 250mm mannitol to the serosal Ringer's solution was inhibited by 30% in the absence of serosal Ca2+. Similarly, the hydrosmotic response toSH was inhibited by 37%, 30% and 40% when 5mm La3+ was added to the serosal medium 30 min before, concommitantly with, or 60 min after induction ofSH. The inhibition of transepithelial water flux observed in the absence of serosal Ca2+ or in the presence of serosal La3+ was reversible. The results support a critical role for Ca2+ in the modulation of transepithelial water permeability in the urinary bladder of amphibia. Ca2+ presumably exerts its effects at a post-cyclic AMP step.