Relativistic Rankine-Hugoniot Equations
- 1 August 1948
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 74 (3), 328-334
- https://doi.org/10.1103/physrev.74.328
Abstract
In Part I of this paper the stress energy tensor and the mean velocity vector of a simple gas are expressed in terms of the Maxwell-Boltzman distribution function. The rest density , pressure, , and internal energy per unit rest mass are defined in terms of invariants formed from these tensor quantities. It is shown that cannot be an arbitrary function of and but must satisfy a certain inequality. Thus for is impossible. It is known that if is given by this relation and , then sound velocity in the medium may be greater than that of light in vacuum. This difficulty is now removed by the inequality mentioned above. In Part II of this paper the relativistic form of the Rankine-Hugoniot equations are derived and it is shown that as a consequence of the inequality mentioned earlier that the shock wave velocity is always less than that of light in vacuum for sufficiently strong shocks.
Keywords
This publication has 2 references indexed in Scilit:
- The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple FluidPhysical Review B, 1940
- Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der RelativtheorieAnnalen der Physik, 1911