Holocene temperature variations inferred from Antarctic ice cores

Abstract
We have reconstructed temperature changes over the past 15 000 years from ice-core data in Antarctica. We used measurements of the D/H isotope ratio in ice as a proxy of temperature for central sites (Vostok, Dome C and Komsomolskaya; as well as coastal sites (D47, D15 and D10). First, we examined the dating of each core and built up a common temporal framework for the ensemble of the data. Secondly, we addressed the problem of inferring small-amplitude temperature fluctuations from the isotope data, in the light of noise-generating mechanisms involved in snow deposition. Temperature was reconstructed so as to minimize distortion created by the sampling of ice cores in the field. The seven ice cores studied yield an average temperature curve which can be put in perspective with nearby paleoclimatic records. The early Holocene experienced climates warmer than today by 1-2°C. The late Holocene period shows more discernible, shorter-duration, temperature fluctuations, superimposed on a fairly stable "base-line" temperature.