Apomictic and sexual pearl millet X Pennisetum squamulatum hybrids

Abstract
Pennisetum squamulatum Fresen, an apomictic East African grass (2n = 54) was crossed to tetraplold (2n = 28) sexual pearl millet, P. americanum L. Leeke to study the potential for germplasm exchange. Twenty interspecific hybrids (2n =41) with 14 pearl millet and 27 P. squamulatum chromosomes were obtained. All resembled P. squamulatum in perennial growth habit and inflorescence characteristics and resembled pearl millet in leafiness and penicillate anther tips. Seventeen of those hybrids were more vigorous than either parent. The most common chromosome association at metaphase I was 18 bivalents plus 5 univalents. At anaphase I and telophase I laggards, fragments, and unequal chromosome distribution were observed. Fifteen of 17 interspecific hybrids reproduced by facultative apomixis, one was sexual and one was an obligate apomict. Ovules with aposporous embryo sacs ranged from 1 to 93%in facultative apomictic plants. Morphological characteristics and chromosome numbers of open-pollinated progeny from the apomictic interspecific hybrid were identical to those of the seed parent indicating obligate apomictic reproduction. Both sexual and apomictic hybrids were partially male fertile with pollen stainability ranging from 29 percent to 79 percent and seed-set ranging from 1 to 60 seed per inflorescence under open-pollination. Development of fertile apomictic pearl millet-P. squamulatum interspecific hybrids appears to be a very useful tool for the transfer of genes for apomixis from the wild species to pearl millet