Copper-thionein in leucocytes

Abstract
Upon incubation of peripheral leucocytes with copper sulphate a dramatic cellular copper uptake reaching levels of 25–50-fold compared to that of the natural copper content was measured. The orange-red fluorescence of the copper-treated white blood cells was assigned to the formation of Cu(I)-thiolate clusters in Cu(I)-thionein. A protein of 6–8 kDa was isolated from homogenized bovine leucocytes and characterized by its electronic absorption and amino acid composition to be identical to the above Cu(I)-thionein. More than 70% of the intracellular copper was attributed to this protein in its monomeric and polymeric form. Cu-thionein formation was more pronounced in monocytes than in granulocytes. As most intriguing phenomenon, the release of this Cu-thionein from leucocytes, was also noticed. The occurrence of Cu-thionein in leucocytes and the excretion of the intact Cu(I)-thiolate protein is of considerable interest with respect to the observed elevated copper levels in white blood cells and plasma during tumor malignancies and inflammatory processes.