Synthesis of myo-inositol 1,3,4,5,6-pentakisphosphate from inositol phosphates generated by receptor activation

Abstract
Myo-[3H]Inositol 1,3,4,5,6-pentakisphosphate can be made from myo-[3H]inositol 1,4,5-trisphosphate in a rat brain homogenate or soluble fraction. Although D-myo-inositol 3,4,5,6-tetrakisphoshate can be phosphorylated by a soluble rat brain enzyme to give myo-inositol 1,3,4,5,6-pentakisphosphate, it is not an intermediate in the pathway from myo-inositol 1,4,5-trisphosphate. The intermediates in the above pathway are myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 1,3,4-trisphosphate and myo-inositol 1,3,4,6-tetrakisphosphate [Shears, Parry, Tang, Irvine, Michell and Kirk (1987) Biochem. J. 246, 139-147; Balla, Guillemette, Baukal and Catt (1987) J. Biol. Chem. 262, 9952-9955], and it is catalysed by soluble kinase activities of similar anion-exchange mobility and Mr value. Compounds with chromatographic and chemical properties consistent with the structures myo-inositol 1,3,4,5-tetrakisphoshate, myo-inositol 1,3,4,6-tetrakisphosphate and myo-inositol 3,4,5,6-tetrakisphosphate are present in avian erythrocytes, human 1321 N1 astrocytoma cells and primary-cultured murine bone-marrow-derived macrophages. The amounts of these inositol tetrakisphosphates rise upon muscarinic cholinergic stimulation of the astrocytoma cells or stimulation of macrophages with platelet-activating factor.