Abstract
This study concerns the stability of the steady laminar boundary-layer flow of a homogeneous fluid which occurs in a rotating system when the relative flow is slow compared to the basic speed of rotation. Such a flow is called an Ekman boundary-layer flow after V. W. Ekman who considered the theory of such flows with application to the wind-induced drift of the surface waters of the ocean.Ekman flow was produced in a large cylindrical rotating tank by withdrawing water from the centre and introducing it at the rim. This created a steady-state symmetrical vortex in which the flow from the rim to the centre took place entirely in the shallow viscous boundary layer at the bottom. This boundary-layer flow became unstable above the critical Reynolds number$Re_c = vD|v = 125 \pm 5$wherevis the tangential speed of flow,$D = (v| \Omega)^{\frac {1}{2}}$is the characteristic depth of the boundary layer,vis the kinematic viscosity, and Ω is the basic speed of rotation. The initial instability was similar to that which occurs in the boundary layer on a rotating disk, having a banded form with a characteristic angle to the basic flow and with the band spacing proportional to the depth of the boundary layer.

This publication has 11 references indexed in Scilit: