Gut microbiota disturbance during antibiotic therapy: a multi-omic approach
Top Cited Papers
Open Access
- 12 December 2012
- Vol. 62 (11), 1591-1601
- https://doi.org/10.1136/gutjnl-2012-303184
Abstract
Objective Antibiotic (AB) usage strongly affects microbial intestinal metabolism and thereby impacts human health. Understanding this process and the underlying mechanisms remains a major research goal. Accordingly, we conducted the first comparative omic investigation of gut microbial communities in faecal samples taken at multiple time points from an individual subjected to β-lactam therapy. Methods The total (16S rDNA) and active (16S rRNA) microbiota, metagenome, metatranscriptome (mRNAs), metametabolome (high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry) and metaproteome (ultra high performing liquid chromatography coupled to an Orbitrap MS2 instrument [UPLC-LTQ Orbitrap-MS/MS]) of a patient undergoing AB therapy for 14 days were evaluated. Results Apparently oscillatory population dynamics were observed, with an early reduction in Gram-negative organisms (day 6) and an overall collapse in diversity and possible further colonisation by ‘presumptive’ naturally resistant bacteria (day 11), followed by the re-growth of Gram-positive species (day 14). During this process, the maximum imbalance in the active microbial fraction occurred later (day 14) than the greatest change in the total microbial fraction, which reached a minimum biodiversity and richness on day 11; additionally, major metabolic changes occurred at day 6. Gut bacteria respond to ABs early by activating systems to avoid the antimicrobial effects of the drugs, while ‘presumptively’ attenuating their overall energetic metabolic status and the capacity to transport and metabolise bile acid, cholesterol, hormones and vitamins; host–microbial interactions significantly improved after treatment cessation. Conclusions This proof-of-concept study provides an extensive description of gut microbiota responses to follow-up β-lactam therapy. The results demonstrate that ABs targeting specific pathogenic infections and diseases may alter gut microbial ecology and interactions with host metabolism at a much higher level than previously assumed.Keywords
This publication has 36 references indexed in Scilit:
- Long-term impacts of antibiotic exposure on the human intestinal microbiotaMicrobiology, 2010
- Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbationProceedings of the National Academy of Sciences, 2010
- Metatranscriptome Analysis of the Human Fecal Microbiota Reveals Subject-Specific Expression Profiles, with Genes Encoding Proteins Involved in Carbohydrate Metabolism Being Dominantly ExpressedApplied and Environmental Microbiology, 2010
- Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twinsProceedings of the National Academy of Sciences, 2010
- The core gut microbiome, energy balance and obesityThe Journal of Physiology, 2009
- ShotgunFunctionalizeR: an R-package for functional comparison of metagenomesBioinformatics, 2009
- Reproducible Community Dynamics of the Gastrointestinal Microbiota following Antibiotic PerturbationInfection and Immunity, 2009
- The Ribosomal Database Project: improved alignments and new tools for rRNA analysisNucleic Acids Research, 2008
- Metaproteomics Approach To Study the Functionality of the Microbiota in the Human Infant Gastrointestinal TractApplied and Environmental Microbiology, 2007
- The gut flora as a forgotten organEMBO Reports, 2006