Partial Purification of Plasma Thromboplastin Antecedent (Factor XI) and its Activation by Trypsin

Abstract
A persistent puzzle in our understanding of hemostasis has been the absence of hemorrhagic symptoms in the majority of patients with Hageman trait, the hereditary deficiency of Hageman factor (factor XII). One proposed hypothesis is that alternative mechanisms exist in blood through which plasma thromboplastin antecedent (PTA, factor XI) can become active in the absence of Hageman factor. In order to test this hypothesis, the effect of several proteolytic enzymes, among them thrombin, plasma kallikrein, and trypsin, was tested upon unactivated PTA. PTA was prepared from normal human plasma by Ca3(PO4)2 adsorption, ammonium sulfate fractionation, and successive chromatography on QAE-Sephadex (twice). Sephadex-G150, and SP-Sephadex. The partially purified PTA was almost all in its native form, with a specific activity of 45-70 U/mg protein; the yield was about 10%. It contained no measurable amounts of other known clotting factors, plasmin, plasminogen, nor IgG. Incubation of PTA with trypsin generated potent clot-promoting activity that corrected the abnormally long clotting time of plasma deficient in Hageman factor or PTA but not in Christmas factor. This clot-promoting agent behaved like activated PTA on gel filtration (apparent molecular weight: 185,000) and was specifically inhibited by an antiserum directed against activated PTA. These data suggested that PTA can be converted into its active form by trypsin. PTA was not activated by thrombin, chymotrypsin, papain, ficin, plasmin, plasma kallikrein, tissue thromboplastin, or C̄. Trypsin converted PTA to its active form enzymatically. Whether trypsin serves to activate PTA in vivo is not yet clear.