Sampling-based sweep planning to exploit local planarity in the inspection of complex 3D structures

Abstract
We present a hybrid algorithm that plans feasible paths for 100% sensor coverage of complex 3D structures. The structures to be inspected are segmented to isolate planar areas, and back-and-forth sweep paths are generated to view as much of these planar areas as possible while avoiding collision. A randomized planning procedure fills in the remaining gaps in coverage. The problem of selecting an order to traverse the elements of the inspection is solved by reduction to the traveling salesman problem. We present results of the planning algorithm for an autonomous underwater vehicle inspecting the in-water portion of a ship hull. The randomized configurations succeed in observing confined and occluded areas, while the 2D sweep paths succeed in covering the open areas.

This publication has 14 references indexed in Scilit: