Caspase-10 involvement in cytotoxic drug-induced apoptosis of tumor cells

Abstract
Anticancer drugs can induce tumor cell death by caspase-dependent apoptosis. The observation that procaspase-10 expression decreased in leukemic cells from acute myeloblastic leukemia patients at first relapse led us to explore the role of caspase-10 in cytotoxic drug-induced apoptosis. We show that caspase-10 is activated in etoposide-treated cells in a dose- and time-dependent manner. A caspase-10 peptide inhibitor, a caspase-10 dominant-negative mutant or a small interfering RNA (siRNA)-mediated downregulation of the enzyme negatively interfere with drug-induced cell death and caspase-2, -3, -8 and -9 activation. The extrinsic pathway to apoptosis is not involved in drug-induced caspase-10 activation that occurs downstream of Bax redistribution to mitochondria and cytochrome c release from this organelle. siRNA-mediated downregulation of Apaf-1 prevents etoposide-mediated activation of caspase-10. In a cell-free assay, cytochrome c and dATP treatment of cell extracts after immunodepletion of either caspase-3 or caspase-9 indicates that caspase-10 is activated downstream of caspase-9. Then, caspase-10 is involved in a feedback amplification loop that amplifies caspase-9 and -3 activities. Altogether, these data indicate an active role for caspase-10 in cytotoxic drug-induced tumor cell death, downstream of the mitochondria.