Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey

Abstract
The primate amygdaloid complex projects to a number of visual cortices, including area V1, primary visual cortex, and area TE, a higher‐order unimodal visual area involved in object recognition. We investigated the synaptic organization of these projections by injecting anterograde tracers into the amygdaloid complex of Macaca fascicularis monkeys and examining labeled boutons in areas TE and V1 using the electron microscope. The 256 boutons examined in area TE formed 263 synapses. Two hundred twenty‐three (84%) of these were asymmetric synapses onto dendritic spines and 40 (15%) were asymmetric synapses onto dendritic shafts. Nine boutons (3.5%) formed double asymmetric synapses, generally on dendritic spines, and 2 (1%) of the boutons did not form a synapse. The 200 boutons examined in area V1 formed 211 synapses. One hundred eighty‐nine (90%) were asymmetric synapses onto dendritic spines and 22 (10%) were asymmetric synapses onto dendritic shafts. Eleven boutons (5.5%) formed double synapses, usually with dendritic spines. We conclude from these observations that the amygdaloid complex provides an excitatory input to areas TE and V1 that primarily influences spiny, probably pyramidal, neurons in these cortices. J. Comp. Neurol. 496:655–667, 2006.