Nonlinear spectroscopy with entangled photons: Manipulating quantum pathways of matter

Abstract
Optical signals obtained by the material response to classical laser fields are given by nonlinear response functions which can be expressed by sums over various quantum pathways of matter. We show that some pathways can be selected by using nonclassical fields, through the entanglement of photon and material pathways, which results in a different-power law dependence on the incoming field intensity. Spectrally overlapping stimulated Raman scattering (SRS) and two-photon-absorption (TPA) pathways in a pump probe experiment are separated by controlling the degree of entanglement of pairs of incoming photons. Pathway-selectivity opens up new avenues for mapping photon into material entanglement. New material information, otherwise erased by interferences among pathways, is revealed.

This publication has 23 references indexed in Scilit: