Abstract
Neural network architecture is presented as one approach to the design and implementation of intelligent control systems. Neural networks can be considered as massively parallel distributed processing systems with the potential for ever-improving performance through dynamical learning. The nomenclature and characteristics of neural networks are outlined. Two simple examples are presented to illustrate applications to control systems: one is fault isolation mapping, and the other involves optimization of a Hopfield network that defines a clockless analog-to-digital conversion.

This publication has 11 references indexed in Scilit: