Regulation of Phosphotransferase Activity of Hexokinase 2 fromSaccharomycescerevisiaeby Modification at Serine-14
- 1 January 2001
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 40 (4), 1083-1090
- https://doi.org/10.1021/bi001745k
Abstract
Isoenzyme 2 of hexokinase functions in sugar sensing and glucose repression in Saccharomyces cerevisiae. The degree of in vivo phosphorylation of hexokinase 2 at serine-14 is inversely related to the extracellular glucose concentration [Vojtek, A. B., and Fraenkel, D. G. (1990) Eur. J. Biochem. 190, 371−375]; however, a physiological role of the modification causing the dissociation of the dimeric enzyme in vitro [as effected by a serine-glutamate exchange at position 14; Behlke et al. (1998) Biochemistry 37, 11989−11995] is unclear. This paper describes a comparative stopped-flow kinetic and sedimentation equilibrium analysis performed with native unphosphorylated hexokinase 2 and a permanently pseudophosphorylated glutamate-14 mutant enzyme to determine the functional consequences of phosphorylation-induced enzyme dissociation. The use of a dye-linked hexokinase assay monitoring proton generation allowed the investigation of the kinetics of glucose phosphorylation over a wide range of enzyme concentrations. The kinetic data indicated that monomeric hexokinase represents the high-affinity form of isoenzyme 2 for both glycolytic substrates. Inhibition of glucose phosphorylation by ATP [Moreno et al. (1986) Eur. J. Biochem. 161, 565−569] was only observed at a low enzyme concentration, whereas no inhibition was detected at the high concentration of hexokinase 2 presumed to occur in the cell. Pseudophosphorylation by glutamate substitution for serine-14 increased substrate affinity at high enzyme concentration and stimulated the autophosphorylation of isoenzyme 2. The possible role of hexokinase 2 in vivo phosphorylation at serine-14 in glucose signaling is discussed.This publication has 19 references indexed in Scilit:
- The hexokinase 2 protein participates in regulatory DNA‐protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiaeFEBS Letters, 1998
- Nucleotide-Dependent Complex Formation between the Escherichia coli Chaperonins GroEL and GroES Studied under Equilibrium ConditionsBiochemistry, 1997
- Differential Requirement of the Yeast Sugar Kinases for Sugar Sensing in Establishing the Catabolite‐Repressed StateEuropean Journal of Biochemistry, 1996
- Glucose repression in fungiTrends in Genetics, 1995
- Carbon catabolite repression in yeastEuropean Journal of Biochemistry, 1992
- Phosphorylation of yeast hexokinasesEuropean Journal of Biochemistry, 1990
- Hexokinase PII from Saccharomyces cerevisiae is regulated by changes in the cytosolic Mg2+‐free ATP concentrationEuropean Journal of Biochemistry, 1986
- Glucose repression and hexokinase isoenzymes in yeast. Isolation and characterization of a modified hexokinase PII isoenzymeEuropean Journal of Biochemistry, 1985
- Yeast Hexokinase: Substrate‐Induced Association‐ Dissociation Reactions in the Binding of Glucose to Hexokinase P‐IIEuropean Journal of Biochemistry, 1976
- [3] Hexokinase of rat brainMethods in Enzymology, 1975