Fracture of a Viscous Liquid

Abstract
When a viscous liquid hits a pool of liquid of the same nature, the impact region is hollowed by the shock. Its bottom becomes extremely sharp if increasing the impact velocity, and we report that the curvature at that place increases exponentially with the flow velocity, in agreement with a theory by Jeong and Moffatt. Such a law defines a characteristic velocity for the collapse of the tip, which explains both the cusplike shape of this region, and the instability of the cusp if increasing (slightly) the impact velocity. Then, a film of the upper phase is entrained inside the pool. We characterize the critical velocity of entrainment of this phase and compare our results with recent predictions by Eggers.
All Related Versions