On the viscous flow about the trailing edge of a rapidly oscillating plate

Abstract
The incompressible laminar flow in the neighbourhood of the trailing edge of an aerofoil undergoing sinusoidal oscillations of high frequency and low amplitude in a uniform stream is described in the limit as the Reynolds number R tends to infinity. The aerofoil is replaced by a flat plate on the assumption that leadingedge stall does not take place. It is shown that, for oscillations of non-dimensional frequency $O(R^{\frac{1}{4}})$ and amplitude $O(R^{\frac{9}{16}})$, a rational description of the flow at the trailing edge is based on a subdivision of the boundary layer above the plate into five distinct regions. Asymptotic analytic solutions are found in four of these, whilst in the fifth a linearized solution yields an estimate for the viscous correction to the circulation determined by the Kutta condition.