Abstract
Nucleation of damage centres in single crystal silicon held at room temperature and bombarded in a “random” direction with light ions is not at all times heterogeneous, as has sometimes been assumed. Homogeneous nucleation of interstitial clusters occurs at low ion fluences and this is characterized, for an extremely short period, by a linear dependence of the state of disorder on ion fluence, followed by a longer period during which disorder a (fluence)1/2. During these periods of ‘nucleation’ and ‘primary growth’ small interstitial clusters behave as unsaturable traps. For higher fluences there is a smooth transfer to a form of damage increase which is not of displacement cascade origin. In this period of ‘secondary growth’ the state of disorder varies linearly with ion fluence, and interstitial clusters behave as nucleation traps. It is shown how marked effects on the state of disorder due to changes in the mass of the bombarding ion, in the flux of the impinging beam, or in the temperature and impurity content of the bombarded crystal, can be simply traced to an early assistance for or a resistance to the onset of hetero- over homogeneous nucleation.