Relationship between Urinary 15-F2t-Isoprostane and 8-Oxodeoxyguanosine Levels and Breast Cancer Risk

Abstract
To evaluate the role of oxidative stress in breast cancer, we measured urinary levels of 15-F2t-isoprostane (15-F2t-IsoP) and 8-oxodeoxyguanosine (8-oxodG) in 400 cases and 401 controls, participants of the Long Island Breast Cancer Study Project. We also analyzed the effect of different factors that are associated with oxidative stress and might influence 15-F2t-IsoP and 8-oxodG levels. We observed a statistically significant trend in breast cancer risk with increasing quartiles of 15-F2t-IsoP levels [odds ratio (OR), 1.25; 95% confidence interval (95% CI), 0.81-1.94; OR, 1.53; 95% CI, 0.99-2.35; OR, 1.88; 95% CI, 1.23-2.88, for the 2nd, 3rd, and 4th quartile relative to the lowest quartile, respectively; Ptrend = 0.002]. Although it is possible that increased levels may reflect the stress associated with recent treatment, the positive association was also observed when the analyses were restricted to case women for whom chemotherapy and radiation therapy had not yet been initiated at the time of the urine collection. The association with the highest quartile compared with lowest quartile of 15-F2t-IsoP was similar across strata of age, physical activity, fruit and vegetable intake, alcohol intake, cigarette smoking, body mass index, and menopausal status. We did not observe any association of breast cancer risk with 8-oxodG levels, but when cases with radiation treatment were removed from the analysis, a significant inverse trend (P = 0.04) was observed. Among controls, levels of 15-F2t-IsoP were higher among current cigarette smokers but did not differ by the amount of physical activity, fruit and vegetable intake, alcohol intake, body mass index, and menopausal status. Among controls, levels of 8-oxodG were higher among postmenopausal women and current and former cigarette smokers but did not differ by the other factors. In summary, our results suggest that urinary markers of lipid peroxidation and oxidative DNA damage may be associated with breast cancer risk. (Cancer Epidemiol Biomarkers Prev 2006;15(4):639-44)