Abstract
Resilience of complex networks to failure has been an important issue in network research for decades, and recent studies have begun to focus on the inverse recovery of network functionality through strategically healing missing nodes or edges. However, the effect of network recovery is far from fully understood, and a general theory is still missing. Here we propose and study a general model of localized recovery, where a group of neighboring nodes are restored in an invasive way from a seed node. We develop a theoretical framework to compare the effect of random recovery (RR) and localized recovery (LR) in complex networks including Erdős-Rényi networks, random regular networks, and scale-free networks. We find detailed phase diagrams for the subnetwork of occupied nodes and the “complement network” of failed nodes under RR and LR. By identifying the two competitive forces behind LR, we present an analytical and numerical approach to guide us in choosing the appropriate recovery strategy and provide estimation on its effect by using the degree distribution of the original network as the only input. Our work therefore provides insight for quantitatively understanding recovery process and its implications in infrastructure protection in various complex systems.

This publication has 34 references indexed in Scilit: