Real-time coarse-to-fine topologically preserving segmentation

Abstract
In this paper, we tackle the problem of unsupervised segmentation in the form of superpixels. Our main emphasis is on speed and accuracy. We build on [31] to define the problem as a boundary and topology preserving Markov random field. We propose a coarse to fine optimization technique that speeds up inference in terms of the number of updates by an order of magnitude. Our approach is shown to outperform [31] while employing a single iteration. We evaluate and compare our approach to state-of-the-art superpixel algorithms on the BSD and KITTI benchmarks. Our approach significantly outperforms the baselines in the segmentation metrics and achieves the lowest error on the stereo task.

This publication has 23 references indexed in Scilit: