The Mechanical Properties of a Thermoplastic Elastomer Produced by the Bacterium Pseudomonas oleovorans

Abstract
PHO, a poly(β-hydroxyalkanoate) copolymer containing mostly β-hydroxyoctanoate repeating units, was produced in a fed batch fermentation process by Pseudomonas oleovorans when grown on sodium octanoate as the sole carbon source. The polymer from different batches—evaluated with regards to composition, molecular weight distribution, thermal transition temperatures, and decomposition temperature—was found to be highly consistent batch-to-batch. Polymer composition as a function of growth time did not change significantly once the culture reached the stationary growth phase. PHO when crystallized at room temperature from the melt, forms a physically crosslinked network with the crystalline regions acting as the physical crosslinks. The molecular weight between physical crosslinks was determined to be approximately 4000. The stress-strain properties, hardness, and tensile set of PHO were found to be within the range of values defined by a variety of commercially available thermoplastic elastomers with differing chemical structures. The tensile set of PHO was high, 35% after 100% elongation. Experimental evidence supports three possible sources of the high tensile set: permanent strain-induced orientation or displacement of the physical crosslinks, irreversible strain-induced crystallization, and deformation-induced changes of the size and purity/perfection of crystalline regions.