Surface-Template Assembly of Two-Dimensional Metal−Organic Coordination Networks

Abstract
The self-assembly of iron-coordinated two-dimensional metal−organic networks on a Cu(100) surface has been investigated by scanning tunneling microscopy under ultra-high-vacuum conditions. We applied three rodlike polybenzene dicarboxylic acid molecules with different backbone lengths as organic linkers. The three linker molecules form topologically identical rectangular networks with Fe, all comprising iron pairs as the network nodes. Whereas the length of the linker molecules defines the dimension of the networks, the substrate also significantly influences the structural details, e.g., network orientation with respect to the substrate, geometric shape of the network cavities, Fe−carboxylate coordination configuration, and iron−iron distance.