Gaussian-Process Factor Analysis for Low-Dimensional Single-Trial Analysis of Neural Population Activity
Top Cited Papers
- 1 July 2009
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 102 (1), 614-635
- https://doi.org/10.1152/jn.90941.2008
Abstract
We consider the problem of extracting smooth, low-dimensional neural trajectories that summarize the activity recorded simultaneously from many neurons on individual experimental trials. Beyond the benefit of visualizing the high-dimensional, noisy spiking activity in a compact form, such trajectories can offer insight into the dynamics of the neural circuitry underlying the recorded activity. Current methods for extracting neural trajectories involve a two-stage process: the spike trains are first smoothed over time, then a static dimensionality-reduction technique is applied. We first describe extensions of the two-stage methods that allow the degree of smoothing to be chosen in a principled way and that account for spiking variability, which may vary both across neurons and across time. We then present a novel method for extracting neural trajectories—Gaussian-process factor analysis (GPFA)—which unifies the smoothing and dimensionality-reduction operations in a common probabilistic framework. We applied these methods to the activity of 61 neurons recorded simultaneously in macaque premotor and motor cortices during reach planning and execution. By adopting a goodness-of-fit metric that measures how well the activity of each neuron can be predicted by all other recorded neurons, we found that the proposed extensions improved the predictive ability of the two-stage methods. The predictive ability was further improved by going to GPFA. From the extracted trajectories, we directly observed a convergence in neural state during motor planning, an effect that was shown indirectly by previous studies. We then show how such methods can be a powerful tool for relating the spiking activity across a neural population to the subject's behavior on a single-trial basis. Finally, to assess how well the proposed methods characterize neural population activity when the underlying time course is known, we performed simulations that revealed that GPFA performed tens of percent better than the best two-stage method.Keywords
This publication has 66 references indexed in Scilit:
- Gaussian-Process Factor Analysis for Low-Dimensional Single-Trial Analysis of Neural Population ActivityJournal of Neurophysiology, 2009
- Detecting Neural-State Transitions Using Hidden Markov Models for Motor Cortical ProsthesesJournal of Neurophysiology, 2008
- Chronic multi-electrode neural recording in free-roaming monkeysJournal of Neuroscience Methods, 2008
- Analysis of Between-Trial and Within-Trial Neural Spiking DynamicsJournal of Neurophysiology, 2008
- Noise in the nervous systemNature Reviews Neuroscience, 2008
- Spike Correlations in a Songbird Agree with a Simple Markov Population ModelPLoS Computational Biology, 2007
- Natural stimuli evoke dynamic sequences of states in sensory cortical ensemblesProceedings of the National Academy of Sciences, 2007
- Techniques for extracting single-trial activity patterns from large-scale neural recordingsCurrent Opinion in Neurobiology, 2007
- Transient Dynamics versus Fixed Points in Odor Representations by Locust Antennal Lobe Projection NeuronsNeuron, 2005
- Optical Imaging of Neuronal Populations During Decision-MakingScience, 2005