Abstract
Measurements were obtained of the mean velocity, Reynolds stress tensor components and spectral distribution of turbulent energy in a boundary layer that was adjusting spatially from a collateral to a three-dimensional state because of transverse motion of the bounding wall. The results indicate that changes to the turbulent structure lead to a strong coupling between the axial and transverse components of mean velocity. The influence of the imposed motion was found to be confined to a discrete region near the wall over the first ten initial boundary layer thicknesses, after which it became more global in nature.