Abstract
The source function describing the energy transfer between the components of the internal wave spectrum due to nonlinear interactions is derived from the Lagrangian of the fluid motion and evaluated numerically for the spectral models of Garrett & Munk (1972a, 1975). The characteristic time scales of the transfer are found to be typically of the order of some days, so that nonlinear interactions will play an important role in the energy balance of the wave field. Thus implications of the nonlinear transfer within the spectrum for generation and dissipation processes are considered.

This publication has 7 references indexed in Scilit: