Abstract
DNA molecules of the plasmid ColEl are normally recovered from wild-type cells as a set of monomer- and multimer-size rings. The data of this paper show that the multimer-size species are a product of genetic recombination. Multimer rings do not arise after transfection of purified monomers into bacterial host cells lacking a functional recA recombination system. Analogously, purified dimers, trimers, and tetramers, transfected into recA- cells, can replicate, but are constrained to remain in those conformations. Only upon transfection into rec+ cells can they regenerate the full spectrum of monomer- and multimer-size species. In this paper we trace the flow of genetic information from the monomer to the multimer state and back again under the guidance of the recA recombination system. The formation of multimer-size DNA rings is discussed as a natural consequence of the maturation of a Holliday recombination intermediate formed between two monomer plasmid genomes.