Abstract
In previous papers we have reported (Mohr and Durst, 1966a, b) that synthesis of phenylalanine deaminase (EC 4.3.1.5), an important enzyme of phenolic metabolism, can be stimulated by the physiologically active phytochrome (=P730) in the mustard seedling. The data of the present paper suggest that induction of this enzyme is a rapid process if the gene in question is easily accessible for the activating action of P730. The seedlings were irradiated with continuous standard far-red light. Longtime irradiation with far-red will maintain a low but virtually constant level of P730 in the seedling over an extended period of time. At the moment when the far-red light is turned off the action of P730 will virtually cease. — Fig. 3 and Fig. 4, lower part, show the kinetics of enzyme induction by P730 in an etiolated seedling. The initial (or primary) lag-phase after the onset of far-red is 1.5 hours. If, however, a seedling which has been pre-irradiated with 12 hours of far-red is kept in darkness for 6 hours and is then re-irradiated with far-red no lag-phase for the action of the second irradiation can be found. Enzyme activity increases immediately after the onset of far-red. Since the action of the second irradiation as measured by increase of enzyme activity can be inhibited by relatively low doses of Puromycin and Cycloheximide (table) we conclude that the re-appearance of P730 leads to de novo synthesis of enzyme protein. — Application of Actinomycin D (10 μg/ml) only partially inhibits the action of the second irradiation as measured by increase of enzyme activity. This finding was to be expected. In preceding papers (e.g. Mohr and Bienger, 1967) it has been concluded that genes which have once been activated by P730 remain less sensitive towards Actinomycin D even when P730 has disappeared. Taking into account all available data the conclusion seems to be justified that the induction of enzyme synthesis by P730 (i.e. differential gene activation followed by enzyme synthesis) is a rapid process if the genes are accessible for the action of P730. The relatively long initial lag-phase (1.5 hours) is needed to make the “potentially active genes (P730)” accessible for the action of P730. The problem of how the initial lag-phase can be understood has been dealt with more in detail in a previous paper on phytochrome-mediated anthocyanin synthesis (Lange, Bienger and Mohr, 1967). Bei Erstbelichtung des Senfkeimlings mit Dauer-Dunkelrot tritt der P730-abhängige Anstieg der Phenylalanindesaminase-Aktivität erst mit einer lag-Phase von 1,5 Std ein (Abb. 3, 4 unten). Bei einer Zweitbelichtung (Programm: Erstbelichtung — längere Dunkelperiode — Zweitbelichtung) fehlt die lag-Phase (Abb. 4, oben). Die Enzymaktivität steigt sofort linear an. Da der Anstieg der Enzymaktivität wahrscheinlich auf eine de novo Synthese von RNS und Enzymprotein zurückzuführen ist (Tabelle), so erscheint der Schluß berechtigt, daß P730 sehr rasch eine differentielle Genaktivierung mit anschließender Enzymsynthese bewirken kann, falls die Gene der Aktivierung durch P730 zugänglich sind. Die relativ lange lag-Phase nach Einsetzen der Erstbelichtung benötigt das P730 offenbar dazu, die “potentiell aktiven Gene (P730)” für das P730 zugänglich zu machen. Das Problem der “primären” lag-Phase ist in einer vorangegangenen Arbeit zur P730-abhängigen Anthocyansynthese ausführlich diskutiert worden (vgl. Lange, Bienger und Mohr, 1967).