Changes in size and compliance of the calf after 30 days of simulated microgravity

Abstract
Increased leg venous compliance may contribute to postflight orthostatic intolerance in astronauts. We reported that leg compliance was inversely related to the size of the muscle compartment. The purpose of this study was to test the hypothesis that reduced muscle compartment after long-duration exposure to microgravity would cause increased leg compliance. Eight men, 31–45 yr old, were measured for vascular compliance of the calf and serial circumferences of the calf before and after 30 days of continuous 6 degrees head-down bed rest. Cross-sectional areas (CSA) of muscle, fat, and bone compartments in the calf were determined before and after bed rest by computed tomography. From before to after bed rest, calculated calf volume (cm3) decreased (P less than 0.05) from 1,682 +/- 83 to 1,516 +/- 76. Calf muscle compartment CSA (cm2) also decreased (P less than 0.05) from 74.2 +/- 3.6 to 70.6 +/- 3.4; calf compliance (ml.100 ml-1.mmHg-1.100) increased (P less than 0.05) from 3.9 +/- .7 to 4.9 +/- .5. The percent change in calf compliance after bed rest was significantly correlated with changes in calf muscle compartment CSA (r = 0.72, P less than 0.05). The increased leg compliance observed after exposure to simulated microgravity can be partially explained by reduced muscle compartment. Countermeasures designed to minimize muscle atrophy in the lower extremities may be effective in ameliorating increased venous compliance and orthostatic intolerance after spaceflight.