Heterochromatin in the chromosomes of the gorilla: characterization with distamycin A/DAPI, D287/170, chromomycin A3, quinacrine, and 5-azacytidine

Abstract
The chromosomes of the gorilla were extensively studied with various staining techniques labeling the different classes of heterochromatin. The chromosomal distribution of distamycin A/DAPI-, D287/170-, quinacrine-, and chromomycin A3-positive heterochromatic regions, as well as the nucleolus organizer regions, is described and compared with the karyotypes of other hominoid species. Lymphocyte cultures were treated with low doses of 5-azacytidine during the last hours of culture. This cytidine analog induces distinct undercondensation in 37 heterochromatic regions in the 24 gorilla chromosomes. The 5-azacytidine-induced undercondensations are localized not only in most of the distamycin A/DAPI-bright heterochromatic regions but also in many telomeric C-bands of the chromosomes. Furthermore, 5-azacytidine preserves the somatic pairing between heterochromatic regions from the interphase nuclei into the metaphase stage. The homeologies and differences in the chromosomal localization of the various classes of heterochromatin, 5-azacytidine-sensitive regions, 5-methylcytosine-rich DNA sequences, and satellite DNAs in the gorilla, chimpanzee, orangutan, and man are discussed.