Hydrodynamical models of Type II-Plateau Supernovae

Abstract
We present bolometric light curves of Type II-plateau supernovae (SNe II-P) obtained using a newly developed, one-dimensional Lagrangian hydrodynamic code with flux-limited radiation diffusion. Using our code we calculate the bolometric light curve and photospheric velocities of SN1999em obtaining a remarkably good agreement with observations despite the simplifications used in our calculation. The physical parameters used in our calculation are E=1.25 foe, M= 19 M_\odot, R= 800 R_\odot and M_{Ni}=0.056 M_\odot. We find that an extensive mixing of 56Ni is needed in order to reproduce a plateau as flat as that shown by the observations. We also study the possibility to fit the observations with lower values of the initial mass consistently with upper limits that have been inferred from pre-supernova imaging of SN1999em in connection with stellar evolution models. We cannot find a set of physical parameters that reproduce well the observations for models with pre-supernova mass of \leq 12 M_\odot, although models with 14 M_\odot cannot be fully discarded.