Insertional inactivation of an Escherichia coli urease gene by IS3411

Abstract
Ureolytic Escherichia coli are unusual clinical isolates that are found at various extraintestinal sites of infection, predominantly the urinary tract. The urease-positive phenotype is unstable in approximately 25% of these isolates, and urease-negative segregants are produced at a high frequency. We have studied the nature of the urease-positive-to-negative transition in one of these isolates, designated E. coli 1021. Southern hybridization experiments with genomic DNA extracted from seven independent E. coli 1021 urease-negative segregants revealed the presence of a 1.3-kb DNA insertion in the urease gene cluster. A DNA fragment containing the DNA insertion was cloned from one of the urease-negative segregants. This cloned DNA fragment was capable of mediating cointegrate formation with the conjugative plasmid pOX38, suggesting that the DNA insertion was a transposable element. The insert was identified as an IS3411 element in ureG by DNA sequence analysis. A 3-bp target duplication (CTG) flanking the insertion element was found. DNA spanning the insertion site was amplified from the other six urease-negative segregants by using the polymerase chain reaction. The DNA sequence of the amplified fragments indicated that an IS3411 element was found in an identical site in all urease-negative segregants examined. These data suggest that in E. coli 1021, IS3411 transposes at a high frequency into ureG at a CTG site, disrupting this gene and eliminating urease activity.