Regulation of beta-glucuronidase expression in transgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a French bean beta-phaseolin gene.
- 1 September 1989
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Cell
- Vol. 1 (9), 839-853
- https://doi.org/10.1105/tpc.1.9.839
Abstract
A 0.8-kilobase fragment from the 5'-flanking region of a French bean beta-phaseolin gene yielded strong, temporally regulated, and embryo-specific expression of beta-glucuronidase (GUS) in transgenic tobacco plants, paralleling that found for the seed protein phaseolin [Sengupta-Gopalan, C., Reichert, N.A., Barker, R.F., Hall. T.C., and Kemp, J.D. (1985) Proc. Natl. Acad. Sci. USA 82, 3320-3324]. Gel retardation and footprinting assays using nuclear extracts from immature bean cotyledons revealed strong binding of nuclear proteins to an upstream region (-628 to -682) that contains two inverted A/T-rich motifs. Fusion of a 103-base pair fragment or a 55-base pair synthetic oligonucleotide containing these motifs to a minimal 35S promoter/GUS cassette yielded strong GUS expression in several tissues. A different pattern of GUS expression was obtained in immature embryos and germinating seedlings from the nominally constitutive, full-length, 35S promoter. Whereas GUS expression under the control of the 0.8-kilobase beta-phaseolin regulatory region is limited to immature embryos, expression from constructs containing the A/T-rich motifs is strongest in roots. These data, combined with S1 mapping, provide direct evidence that a plant upstream A/T-rich sequence that binds nuclear proteins can activate transcription in vivo. They also indicate that additional regulatory elements in the beta-phaseolin 5'-flanking region are required for embryo-specific gene expression.This publication has 60 references indexed in Scilit:
- Interaction of an embryo DNA binding protein with a soybean lectin gene upstream regionNature, 1987
- In vivo detection of regulatory factor binding sites in the 5′ flanking region of maize Adh1.Journal of Biological Chemistry, 1987
- Sequences in the pea rbcS-3A gene have homology to constitutive mammalian enhancers but function as negative regulatory elements.Genes & Development, 1987
- Yeast HAP1 activator binds to two upstream activation sites of different sequenceCell, 1987
- Organ-Specific and Light-Induced Expression of Plant GenesScience, 1986
- Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levelsProceedings of the National Academy of Sciences, 1986
- Structural specificities of five commonly used DNA nucleasesJournal of Molecular Biology, 1984
- Complete nucleotide sequence of a French bean storage protein gene: PhaseolinProceedings of the National Academy of Sciences, 1983
- A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory systemNucleic Acids Research, 1981
- Messenger RNA for G1 protein of French bean seeds: Cell-free translation and product characterizationProceedings of the National Academy of Sciences, 1978