Abstract
Apolipoprotein B (apoB) mRNA is edited in rat liver and intestine through the direct conversion of cytidine to uridine at nucleotide 6666. Recently, we have proposed the 'Mooring Sequence' model, in which editing complexes (editosomes) assemble on specific apoB mRNA flanking sequences to direct this site-specific editing event. To test this model, apoB mRNA deletion and translocation mutants were constructed and analyzed. Specific sequences 3' of the editing site were absolutely required for editing, while specific sequences and bulk RNA 5' of the editing site were required for efficient editing. Translocation of apoB 3' flanking sequences induced editing of an upstream cytidine, demonstrating that 3' sequences are necessary and sufficient to direct editing in vitro. 3' flanking sequences were also shown to be necessary and sufficient for editosome complex assembly. These data provide strong support for a 'Mooring Sequence' model in which 3' apoB flanking sequences direct editosome assembly and subsequent editing in vitro, while 5' flanking sequences enhance these functions.