Wound dressings containing bFGF-impregnated microspheres

Abstract
The primary objective was to synthesize a novel wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres for promoting healing and tissue regeneration. Gelatin sponge was chosen as the underlying layer and elastomeric polyurethane membranes were used as the external layer. To achieve prolonged release, bFGF addition was loaded in microspheres. The microspheres were characterized for particle size, in vitro protein release and bioactivity. The bilayer dressings were tested in in vivo experiments on full-thickness skin defects created on pigs. Average size of the microspheres was 14.36 ± 3.56 µm and the network sponges were characterized with an average pore size of 80–160 µm. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. It was observed that sustained release of bFGF provided a higher degree of reduction in the wound areas. Histological investigations showed that the dressings were biocompatible and did not cause any mononuclear cell infiltration or foreign body reaction. The structure of the newly formed dermis was almost the same as that of the normal skin. The application of these novel bilayer wound dressings provided an optimum healing milieu for the proliferating cells and regenerating tissues in pig's skin defect models.