Abstract
The β-amyloid peptide, the major component of Alzheimer-associated plaques, derives from a larger β-amyloid precursor protein (APP), that is expressed in both neural and non-neural cells. Overexpression of APP actively contributes to the development of senile plaques and is considered a risk factor for the disease. APP expression is regulated by a variety of cellular mediators, among them ligands of tyrosine kinase receptors. In this study, we present evidence that brain-derived neurotrophic factor (BDNF) modulates, in a dose- and time-dependent fashion, APP promoter activity in SH-SY5Y neuroblastoma cells transiently expressing the receptor TrkB. The APP promoter contains two potential AP-1 sites, and we examined whether or not protein kinase C (PKC) and the AP-1 sites of the promoter mediate the BDNF-induced stimulation of APP. Stimulation of APP promoter activity by BDNF was not affected by the PKC inhibitor bisindolylmaleimide, or by dominant negative mutants of the AP-1 components Fos and Jun, which, however, blocked the response to phorbol esters. These results suggest that activation of the APP promoter by BDNF is largely independent of PKC and AP-1. In contrast, activated Ras increased APP promoter activity in SH-SY5Y cells, and a dominant negative mutant of Ras abolished BDNF-mediated promoter stimulation. Taken together, our results suggest a mechanism that involves activation of the Ras/MAP kinase signaling pathway, and phosphorylation of as yet unidentified effectors which in turn can activate response elements within the APP promoter.

This publication has 49 references indexed in Scilit: