Fluorine in the UK environment

Abstract
Relatively low concentrations of fluorine in drinking water (≤ 1 mg F/l) have been shown to significantly reduce the degree of dental caries in children and fluorine would also appear to have a beneficial effect on bone formation in both humans and farm animals. However, it is apparent that elevated levels of fluorine in the diet have sometimes resulted in problems of increased dental caries and of the development of bone deformities. Much of the fluorine in rocks and soils occurs in apatite and hydroxysilicate minerals, fluorite being the only relatively common rock forming mineral containing fluorine as an essential constituent. Little systematic data are available on fluorine concentrations in soils, plants and natural waters in the UK. General background soil concentrations lie in the range 200 – 400 mg F/kg. For waters the average fluorine content is low, <0.1 mg F/l. In the British Isles there are several areas where there are enhanced levels of fluorine. In the northern Pennines, Derbyshire, northeast Wales and Cornwall, fluorite occurs as a significant component of mineralisation and much fluorine has been added to the environment from mining waste dumps. Soils in northeast Wales contain up to 3,650 mg F/kg and in the northern Pennines up to 20,000 mg F/kg. Waters contain up to 2.3 mg F/l. In southwest England, the granites are generally fluorine-rich with the fluorite granites of the St Austell pluton containing as much as 1 percent fluorine. These rocks are frequently kaolinised and intensively worked as a source of china clay. Soils in the vicinity of the waste tips contain up to 3,300 mg F/kg and grasses up to 2,950 mg F/kg. Surface waters in the St Austell area contain up to 1.25 mg F/l. Atmospheric fluorine pollution around brickworks in the Peterborough and Bedford areas has resulted in fluorosis in farm animals. Other sources of atmospheric fluorine pollution are aluminium smelters, steelworks and fossil fuel burning.

This publication has 26 references indexed in Scilit: